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Controlled synchronization under information constraints
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A class of controlled synchronization systems under information constraints imposed by limited information
capacity of the coupling channel is analyzed. It is shown that the framework proposed by Fradkov er al., [Phys.
Rev. E 73, 066209 (2006)] is suitable not only for observer-based synchronization but also for controlled
master-slave synchronization via a communication channel with limited information capacity. A simple first-
order coder-decoder scheme is proposed and a theoretical analysis for multidimensional master-slave systems
represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided.
An output feedback control law is proposed based on the passification method. It is shown that for systems
with passifiable linear part (satisfying the hyperminimum phase condition) the upper bound of the limiting
synchronization error is proportional to the upper bound of the transmission error. As a consequence, both
upper and lower bounds of the limiting synchronization error are proportional to the maximum rate of the
coupling signal and inversely proportional to the information transmission rate (channel capacity). The results
are applied to controlled synchronization of two chaotic Chua systems coupled via a controller and a channel
with limited capacity. It is shown by computer simulation that, unlike for the case of observer-based synchro-

nization, the hyperminimum phase property cannot be violated for controlled synchronization.
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I. INTRODUCTION

Synchronization of nonlinear systems, particularly chaotic
systems, has attracted the attention of many researchers for
several decades [1,2]. During recent years interest in con-
trolled synchronization has increased, partly driven by a
growing interest in the application of control theory methods
in physics [3-6].

Recently, the limitations of control under constraints im-
posed by a finite capacity information channel have been
investigated in detail in the control theory literature (see
[7-11] and the references therein). It has been shown that
stabilization under information constraints is possible if and
only if the capacity of the information channel exceeds the
entropy production of the system at equilibrium. However,
results of previous work on control system analysis under
information constraints do not apply to synchronization sys-
tems since in a synchronization problem the trajectories in
phase space converge to a set (a manifold) rather than to a
point, i.e., the problem cannot be reduced to simple stabili-
zation.

The first results on synchronization under information
constraints were presented in [12], where the so-called
observer-based synchronization scheme [13] was considered.
In this paper we study a different controlled synchronization
scheme for two nonlinear systems. A major difficulty with
the controlled synchronization problem arises because the
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coupling is implemented in a restricted manner via the con-
trol signal. An arbitrary change of the right-hand sides of the
receiver is not possible; only changes via an additional scalar
control signal are admitted. Such structural restrictions are
important for physically implemented real-world systems. In
addition, the slave system in a controlled synchronization
scheme is nonlinear and bears the structure of the master
system, unlike the observer-based synchronization case.

In this paper, we provide structural conditions [the hyper-
minimum phase (HMP) property] ensuring that increase of
the transmission rate to infinity implies decrease of the syn-
chronization error to zero (see Sec. III). Moreover, it is
shown in Sec. IV that violation of the HMP property may
lead to synchronization failure even if the conditions on the
linear part, imposed in [12], hold. Key tools used to solve the
problem are quadratic Lyapunov functions and passification
methods borrowed from control theory. To reduce technicali-
ties we restrict our analysis to Lurie systems (linear part plus
nonlinearity depending only on measurable outputs). In this
case the physical insight behind the HMP property is that this
property makes a system passifiable by feedback. In turn,
passivity of a dynamical system means that the system does
not contain internal energy sources. Recall that the design
method based on finding a feedback rendering the system
passive is called the passification method.

II. CONTROLLED SYNCHRONIZATION SCHEME
AND CODING PROCEDURES

Consider two identical dynamical systems modeled in Lu-
rie form (i.e., the right-hand sides are split into a linear part
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and a nonlinear part which depends only on the measurable
outputs). Let one of the systems be controlled by a scalar
control function u(7) implementing the coupling between two
systems. The controlled system model is as follows:

X(1) =Ax(1) + Be(y)),  yi(1) = Cx(0), (1)

(1) = Az(t) + Bo(y,) + Du,  y,(t) = Cz(1), ()

where x(r) and z(f) are n-dimensional (column) vectors of
state variables; y,(7), y,(¢) are scalar output variables; A is an
(nXn) matrix; B and D are nX 1 (column) matrices (D is a
matrix of coupling strengths); C is a 1 X n (row) matrix; ¢(y)
is a continuous nonlinearity, acting in the span of control;
vectors x and 7 stand for time derivatives of x(z) and z(z),
respectively. System (1) is called the master (leader) system,
while the controlled system (2) is the slave system (follower).
Our goal is to evaluate limitations imposed on the synchro-
nization precision by limiting the transmission rate between
the systems. The intermediate problem is to find a control
function U(-) depending on measurable variables such that
the synchronization error e(f), where e(r)=z(t)—x(t), be-
comes small as ¢ becomes large. We are also interested in the
value of the output synchronization error &(r)=y,(¢)—y,(¢)
=Ce(1).

A key difficulty arises because the output of the master
system is not available directly but only through a commu-
nication channel with limited capacity. This means that the
signal y,(¢) must be coded at the transmitter side and code-
words are then transmitted with only a finite number of sym-
bols per second, thus introducing some error. We assume that
the observed signal y,(z) is coded with symbols from a finite
alphabet at discrete sampling time instants #,=kT,, k
=0,1,2,..., where T is the sampling time. Let the coded
symbol y,[k]=¥,(#;) be transmitted over a digital communi-
cation channel with a finite capacity. To simplify the analy-
sis, we assume that the observations are not corrupted by
observation noise; transmission delay and transmission chan-
nel distortions may be neglected. Therefore, the discrete
communication channel with sampling period 7 is consid-
ered, but it is assumed that the coded symbols are available
at the receiver side at the same sampling instant #,=kT, as
they are generated by the coder. Assume that zero-order ex-
trapolation is used to convert the digital sequence y,[k] to
the continuous-time input of the response system y,(z),
namely, that v,(1)=y,[k] as kT,<t<(k+1)T,. Then the
transmission error is defined as follows:

8y(1) =y (1) = ,(1). (3)

On the receiver side the signal is decoded, introducing addi-
tional error, and the controller can use only the signal y,(z)
=y,(t)+6,(1) instead of y(r). A block diagram of the system
is shown in Fig. 1.

We restrict consideration to simple control functions in
the form of static linear feedback,

u(t) =—Ke(t), (4)

where &(1)=y,(f)—y,(t) denotes an output synchronization
error, and K is a scalar controller gain. The problem of find-
ing static output feedback even for linear systems is one of
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FIG. 1. Block diagram for master-slave controlled synchroniza-
tion (the master system output y; is transmitted over the channel).

the classical problems of control theory. Although substantial
effort has been devoted to its solution and various necessary
and sufficient conditions for stabilizability by static output
feedback have been obtained, most existing conditions are
not testable practically [14,15]. Since we are dealing with a
nonlinear problem further complicated by information con-
straints, we restrict our attention to sufficient conditions for
solvability of the problem and evaluate upper bounds for the
synchronization error. To this end we introduce an upper
bound on the limit synchronization error Q
=sup lim,_,.||e(#)|, where the supremum is taken over all ad-
missible transmission errors.

In [12] the properties of observer-based synchronization
for Lurie systems over a limited-band communication chan-
nel with one-step memory time-varying coder are studied.
Under the assumption that a sampling period may be prop-
erly chosen, optimality of the binary coding in the sense of
the demanded transmission rate is established. On the basis
of these results, the present paper deals with the following
binary coding procedure as in [12].

Introduce the memoryless (static) binary coder to be a
discretized map ¢;:R—R as

au(y) =M sgn(y), (5)

where sgn(-) is the signum function: sgn(y)=1 if y=0,
sgn(y)=-1 if y<0; the parameter M may be referred to as a
coder range or as a saturation value. Evidently, |y—q(y)|
<M for all y such that y:|y|<2M. Notice that for a binary
coder each codeword symbol contains R=1 bit. The dis-
cretized output of the considered coder is found as y
=q,(y) and we assume that the coder and decoder make
decisions based on the same information [16—18].

Introduce the sequence of central numbers c[k],
k=0,1,2,..., with initial condition ¢[0]=0. At step k the
coder compares the current measured output y[k] with the
number c[k], forming the deviation signal dy[k]=y[k]-c[k].
Then this signal is discretized with a given M =M{[k] accord-
ing to (5). The output signal

Iy[k] = qupiy(dy[k]) (6)

is represented as an R-bit information symbol from the cod-
ing alphabet and transmitted over the communication chan-
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nel to the decoder. Then the central number c[k+1] and the
range parameter M[k] are renewed as follows:
clk+1]= clk] + ay[k],

0]=0, k=0,1,..., (7)

M[k]=(My-M.)p"+M... k=0,1,..., (8)

where 0 <p=1 is the decay parameter, and M, stands for
the limiting value of M[k]. The initial value M, should be
large enough to capture all the region of possible initial val-
ues of yy.

A similar algorithm is realized by the decoder; namely,
the sequence of M[k] is reproduced at the receiver node uti-
lizing (8); the values of dy[k] are restored with given M[k]
from the received codeword; the central numbers c[k] are
found in the decoder in accordance with (7). Then y[k] is
found as a sum c[k]+dy[k].

III. EVALUATION OF SYNCHRONIZATION ERROR

We now find a relation between the transmission rate and
the achievable accuracy of the coder-decoder pair, assuming
that the growth rate of y,(7) is uniformly bounded. Obvi-
ously, the exact bound L, for the rate of y(1) is L,
=sup,.|Cx|, where % is from (2). To analyze the coder-
decoder accuracy, evaluate the upper bound A=sup,|5,(t)| of
the transmission error 8,()=y,(t)-7,(z). The total transmis-
sion error for each interval [1;,7;,,] satisfies the inequality

|6,(1)] <M + L,T,. 9)

The inequality (9) shows that, in order to meet the inequality
|6,(1)]<A=2M for all 1, the sampling interval T should sat-
isfy the condition

T,<A/L,. (10)

To evaluate the limit synchronization error analytically, it
is assumed that D=B in (2). It is also assumed that the trans-
fer function W(\)=C(N—A)~'B of the linear part of the sys-
tem (2) is a hyperminimum phase. Recall that the HMP prop-
erty for a rational function W(\)=b(\)/a(\), where a(\) is a
polynomial of degree n and b(\) is a polynomial of degree
not greater than n— 1, means that b(\) is a Hurwitz polyno-
mial of degree n—1 with positive coefficients [19].

Evaluation of the synchronization error (see Appendix A)
yields

lim[le(r)|| < C;BL,/R, (11)
1—00
i.e., this error can be made arbitrarily small for sufficiently
large transmission rate R.

Remark 1. The HMP property is essential for validity of
the proposed solution to the controlled synchronization prob-
lem, as is shown below in Sec. IV by example of chaotic
system synchronization. On the other hand, the condition
D=B, used for the analytic derivation, is not essential.

Remark 2. Related estimates for synchronization errors in
coupled systems were obtained in several papers, e.g.,
[20,21]. However, in [20,21] either the existence of
Lyapunov functions, i.e., stability of the uncoupled systems
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is required, or partial stability (stability of the synchroniza-
tion manifold) is provided by a strong coupling playing the
role of state feedback in the error system. In this paper, only
output feedback is allowed, and coupling is applied through
the control term Bu, i.e., in a restrictive manner. That is why
the result holds under the additional assumption (passifiabil-
ity) caused by the nature of controlled problems. Then the
partial stability conditions are provided by linear observer
theory. In addition the final result (11) is presented in terms
of the transmission rate, i.e., appeals to the information
theory view.

IV. EXAMPLE: SYNCHRONIZATION OF CHAOTIC
CHUA SYSTEMS

Let us apply the above results to synchronization of two
chaotic Chua systems coupled via a channel with limited
capacity.

Master system. Let the master system (1) be represented
as the following Chua system:

Xy =pl=x;+ @) +x;), t=0,

xZ=X1—Xz+.X3,

X3 ==X,

yi(0) =x,(1), (12)

where y,(7) is the master system output (to be transmitted
over the communication channel); p and ¢ are known param-
eters; x=[x;,x,,x;] € R is the state vector; ¢(y;) is a
piecewise-linear function, having the form

o(y) =mgy +my(ly + 1] = [y - 1]), (13)

where m and m; are given parameters.
Slave system. Correspondingly, the slave system equations
(1) for the considered case become

Zr=pl=z+ ey +n+u(], t=0,
22=Z] — 22+ 23,
3=—¢qx,

y2(t) =24(2), (14)

where y,(7) is the slave system output, z=[z;,2,,23]" € R? is
the state vector, and ¢(y,) is defined by (13).
The controller has the form

u(t)=-Ke(t), (15)

swhere &(f)=y,(r)—y,(¢); ¥,(¢) is the master system output,
restored from the transmitted codeword by the receiver at the
slave system node (see Fig. 1); the gain K is a design param-
eter.

The coding procedure has the form (6)—(8). The input
signal of the coder is y;(¢). The reference input y,(s) for
controller (15) is found by holding the value of y,[k] over the
sampling interval [kT,,(k+1)T,), k=0,1,....

036210-3



FRADKOV, ANDRIEVSKY, AND EVANS

a

=

:_
\;_
-5 -
0 10 20 30 40 t[s]
b)
2
~~ 1 [ Y
iﬁl
- 0
\:N
—1+ |
-2 L L L L
0 10 20 30 40 t[s]

FIG. 2. (Color online) Time histories of the state variables of
master and slave systems (12) and (14) for A=1 (T,=13 ms, R
=75 bit/s): (a) x;(r) (dotted line, z;() (solid line); (b) x,(¢) (dotted
line, z,(7) (solid line).

The following parameter values were taken for the simu-
lation: the Chua system parameters are p=10, g=15.6, m,
=0.33, m;=0.945; the bound L, for the rate of y(r) was
evaluated by numeric integration of (1) over the time interval
t€[0,15,], 15,=1000 s, as L,=45; the parameter A was taken
for different simulation runs as A=0.2,0.4,...,3.0; the
sample interval T, was found for each A from (10); the coder
parameters M, M., and p in (8) were taken as M,=5, M.,
=A/2 (different for each A), and p=exp(-0.17,); the initial
conditions for master and slave systems were x;=0.3, z,=0
(i=1,2,3); and the simulation final time f5,=1000 s.

The normalized state synchronization error

lle@|

max
0.815,<1<15,
= , (16)
max [x(1)]

O=r<tg,
where 8,(t)=y(¢)-y,(1), e(t)=x(1)-z(t), was calculated by

performing the synchonization accuracy index near a steady-
state mode.
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FIG. 3. (Color online) Normalized state synchronization error Q
Vs transmission rate R.
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FIG. 4. (Color online) Time histories of the state variables of
master and slave systems (12) and (14): x;(z) (solid) line, z,(¢)
(dotted line) (T,=13 ms, R=75 bit/s). Synchronization failure if
HMP property is not valid for (2).

Results of the system examination for K=1.0 are reflected
in Figs. 2 and 3. Figure 2 shows time histories of the state
variables of the master and slave systems (12) and (14)
x1(8),z,(¢) (a) and x,(1),z,(r) (b) for A=1 (T,=13 ms, R
=75 bit/s). It is seen that the transient time is about 30 s,
which is consistent with the chosen value of the decay pa-
rameter p in (8), p=exp(-0.17,)=0.9987.

Synchronization performance may be evaluated based on
the normalized state synchronization error Q (16), shown in
Fig. 3 as a function of the transmission rate R. The simula-
tion results make it possible to evaluate the parameter G, in
the inversely proportional function Q=G/R. For the consid-
ered example G=4.0. Based on the theoretical bound, the
simulation data are smothed with a hyperbolic curve, plotted
in Fig. 3 (dashed line).

Let us demonstrate that violation of the HMP condition
may lead to synchronization failure. Indeed, let D
=[-4.66,0.5,-4.4]". Then synchronization fails for all val-
ues of K. It is seen from the time histories of x;(¢) and z,(¢)
for the case K=1 plotted in Fig. 4. On the other hand, for the
case D=[1.00,5.54,4.44]" the HMP condition holds while
D # B. Simulation results for D=[1.00,5.54,4.44]", K=20,
demonstrate that synchronization occurs (see Fig. 5).

V. CONCLUSIONS

The limiting possibilities of controlled synchronization
systems under information constraints imposed by the lim-
ited information capacity of the coupling channel are evalu-
ated. It is shown that the framework proposed in [12] is
suitable not only for observer-based synchronization but also
for controlled master-slave synchronization via communica-

x,(0), 2,(0)
(=]

-5 : I I I I
0 25 50 75 100

5 U]

FIG. 5. (Color online) Time histories of the state variables of
master and slave systems (12) and (14): x,(z) (solid) line, z,;(z)
(dotted line) (T,=13 ms, R=75 bit/s). Synchronization occurs if
D # B; the HMP property is valid for (2).
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tion channel with limited information capacity.

The output feedback control law based on the passifica-
tion method [19,22] is proposed, and theoretical analysis for
multidimensional master-slave systems represented in the
Lurie form is provided. It is shown that the upper bound on
the limiting synchronization error is proportional to the
maximum rate of the coupling signal and inversely propor-
tional to the information transmission rate (channel capac-
ity).

The results are applied to controlled synchronization of
two chaotic Chua systems coupled via a channel with limited
capacity. It is shown by computer simulation that, unlike the
case of observer-based synchronization, the HMP property
cannot be violated for controlled synchronization.
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APPENDIX A: DERIVATION OF THE UPPER BOUND
OF SYNCHRONIZATION ERROR

Subtracting Eq. (1) from Eq. (2) and taking into account
the control law (4), we derive an equation for the synchroni-
zation error in the form

é(t) = Age(t) + B{(1) - BK5,(1), (A1)

where Ag=A-BKC and {(1)=@(y,(1))— o(y(¢)). We evalu-
ate the total guaranteed synchronization error Q
=sup lim,_,..||e(?)|, where ||| denotes the Euclidean norm of a
vector, and the supremum is taken over all admissible trans-
mission errors &,(f) not exceeding the level A in absolute
value. The ratio C,=Q/A (the relative error) can be inter-
preted as the norm of the transformation from the input func-
tion 6,(-) to the output function e(-) generated by the system
(A1). Owing to the nonlinearity of Eq. (Al), evaluation of
the norm C, is nontrivial and it even may be infinite for
rapidly growing nonlinearities ¢(y). To obtain a reasonable
upper bound for C, we assume that the nonlinearity is Lips-
chitz continuous along all the trajectories of the drive system
(2). More precisely, we assume the existence of a positive
number L,>0 such that

le(y) — @(y + 0)| < L,|4|

for all y=Cx, x €}, where () is a set containing all the
trajectories of the drive system (1), starting from the set of
initial conditions (), |8|<A. For Lipschitz nonlinearities
{(1) satisfies inequality |{(1)|<L,|e(r)|. After the change K
— K+L,, the error equation (A1) can be represented as

é(t) = Age(t) + B&(1) — B(K + L) 5,(1), (A2)

where the variable &(1)=L,&(1) +{, apparently, satisfies sector
inequality &(r)e(r)=0 for all 1=0.

The problem is reduced to quantifying the stability prop-
erties of (A2) for bounded input &,(¢). We first analyze the
behavior of the system (A2) for 6,(¢)=0. To this end, we find
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conditions for the existence of a quadratic Lyapunov func-
tion V(e)=e!Pe and controller gain K satisfying the inequal-
ity V(e)<-uV(e) for some u>0 for 6,(t)=0 and for all &
satisfying the quadratic inequality é£=0. Such conditions
are derived from the passification theorem [19,22] (see Ap-
pendix B). That is, such V and K exist if and only if the
transfer function of the linear part of (2) W(N)=C(\I
—A)7!B is the hyperminimum phase. Now consider the case
6,(t) #0, assuming that the HMP condition holds and the
matrix P and gain K are chosen properly and the modified
Lyapunov inequality PA K+A,T(P$—,uP is valid for some u
>(. Evaluating the time derivative of function V(e) along
trajectories of (2) and (1) with initial conditions in ), and
using  the standard ~ quadratic  inequality [’ PB]
<\ V(e)yV(B), after simple algebra, we get

V<—uV+|e"PB(K +L,)8,| < - uV+\V,

where v= V’W(|K|+11QA. Since V<0 within the set \V
> u v, the value of lim, ., sup V(f) cannot exceed AZ(L¢
+|K])Npax(P)/ 2. In view of the positivity of P,
Min(P)|le(®)|>< V(z), where \;,(P) and X\, (P) are the
minimum and maximum eigenvalues of P, respectively.
Hence

lim[e()|| < C*A, (A3)
t—0
where
[Nax(P) L+ |K
sz max( ) %) | | (A4)
)\min(P) M

The inequality (A3) shows that the total synchronization er-
ror is proportional to the upper bound on the transmission
error A.

As was shown in [12], a binary coder is optimal in the
sense of the bit-per-second rate, and the optimal sampling
time 7 for this coder is

T,=A/(BL,), (A5)

where 3~1.688. Then the channel bit rate R=1/T is as
follows:

R=pBLyJA, (A6)

and this bound is tight for the considered class of coders.
APPENDIX B: HMP PROPERTY AND PASSIFICATION
Consider a linear system
é=Ae+ BE&(r), (B1)

with transfer function W(\)=C(N-A)"'B=b(\)/a(N),
where b(\) and a(\) are polynomials, the degree of a(\) is
n, and the degree of b(\) is not greater than n— 1. The system
is called hyperminimum phase, if b(\) is a Hurwitz (stable)
polynomial of degree n—1 with positive coefficients. To find
the existence conditions for a quadratic Lyapunov function
required for passification we need the following result.

Passification theorem [22,19]. Consider a linear system
with feedback

e="Ce,
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é=Age+BE&(r), e=Ce, Ax=A-BKC. (B2)

There exist a positive-definite matrix P=P7>0 and a
number K such that

t

V(e(1)) < V(e(0)) + f e(s)"&(s)ds,

0

(B3)

where V(e)=e”Pe; e(t) is a solution of (B2) if and only if
W(\) is a HMP.

PHYSICAL REVIEW E 78, 036210 (2008)

In addition, let us show that there exist a quadratic form
V(e)=e"Pe and a number K such that the time derivative
V(e) of V(e) along trajectories of (B2) satisfies dissipative
relation V(e) <0 for é&£=0, e#0, if and only if W(\) is
HMP. To this end assume that K is fixed. Then the above
relation is equivalent to existence of the matrix P=P7>0
such that e"P(Age+BE&)+ECe <0 for e #+0. Since & is arbi-
trary, the latter, in turn, is equivalent to the matrix relations
PA K+AIT(P <0, PB=C", and, by the passification theorem, to
the HMP condition.
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